

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA DEPARTMENT OF AUTOMOTIVE ENGINEERING

SECOND SEMESTER EXAMINATIONS, 2018/2019 ACADEMIC SESSION

COURSE:

ATE 304 Dynamics and Control I (3 Units)

CLASS:

300 Level Automotive Engineering

TIME ALLOWED: 3hrs

INSTRUCTIONS: Answer any five questions

HOD'S SIGNATURE

Date: July 2019

Question 1

1a. Enumerate the necessary assumptions required for vehicle modeling?

3 marks

b. (i) Consider the vehicle frame shown in Figure Q1b, If the vehicle speed $V_G = (80t - 15)$ km/hr with tire slip angle of 18° and yaw angle of 5°. Calculate the exact position of G (x_o^G, y_o^G) after 2 hours given that $[x_0, y_0] = [0, 0].$

(ii) Show that the longitudinal and lateral acceleration of the vehicle could be obtained as follows;

$$a_x = \dot{u} - u^2 \beta \rho, \ a_y = u \dot{\beta} + \dot{u} \beta + u^2 \rho$$

Where β and ρ are kinematic ratios, u and v are the longitudinal and lateral velocities of the vehicle respectively. 4 marks

Question 2

Draw clear sketch of tire axis system and explain the details. 2a.

4 marks

A car weighs 800 kg. If the tire prints as shown in figure Q2b of each radial tire is $Ap = 4 \times a \times b = 4 \times 5$ b. cm x 12 cm, determine the maximum normal stress in the tire and write the expression for the stress distribution over the entire tire print. 8 marks

Figure Q1b

Figure Q2b

Question 3

Develop the expression for the brake force and reaction forces under the tires of a car parked on an inclined 3. surface as shown in figure Q3. Determine the maximum inclination angle for the car.

Figure Q3

12 marks

110 cm

 $230 \mathrm{~cm}$

35 cm

Question 4

4a. Explain the difference between dependent and independent suspension system 4 marks

b. Enlist the primary functions of a suspension system. Explain various types of independent suspension system.

4 marks

c. What do you understand by passive suspension system and active suspension system? 4 m

4 marks

Question 5

5. A vehicle weighing 1600 kg is moving along a supposed straight and plane road at 88 km/hr. The front area of the vehicle is 2.0 m² and the coefficient of drag is 0.4. The aerodynamic resistance is acting on the centre of gravity. The wheel base of the vehicle is 2.8 m and the centre of gravity is at 1.2 m from the front axle and at 0.5 m above the ground. Identify and estimate the likely forces acting on the vehicle if the brake is under no acceleration, decelerating at 5 m/s². The density of air is 1.225 kg/m³ 12 marks

Question 6

6a. Enumerate the three basic functions of a vehicle brake system.

3 marks

b. Show that the wheel rate of a four-wheel vehicle could be obtained as expressed;

$$k_w = \frac{w_s}{\delta_s} exp\left(\frac{v - v_s}{\delta_s}\right)$$

Where W_s is the wheel static load, δ_s is the static wheel displacement, v is the wheel deflection, v_s is the static wheel deflection.

9 marks

Question 7

7. Briefly discuss with necessary models and diagram, the following forces acting on a vehicle in motion.

a. weight (due to gravity)

b. aerodynamic force

c. road-tire friction forces

d. road-tire vertical forces

3 marks

3 marks

3 marks